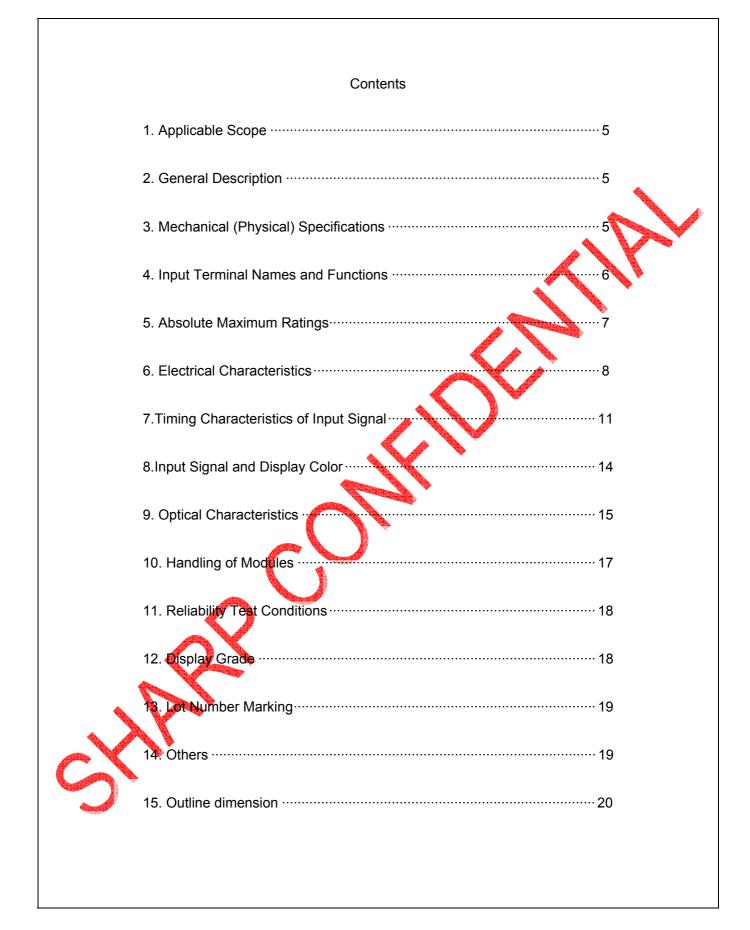
SHARP

No.	LCM-05005A
DATE	13.May.2005

RECORDS OF REVISION

MODEL No : LQ043T3DX02


SPEC No.	Date	NO.	PAGE	SUMMARY	NOTE
LCM-05005	8.Feb.2005	_	-	-	1st Issue
LCM-05005A	12.May.2005	\triangle	10	Prohibited timing of "DISP" changes Low to High.	
				A	
		i			
				÷	
		\mathbf{N}	*		
					
•		*			
	N				
	•				

LCM-05005A Page 3 of 21

- ○This technical literature includes information and/or data that are subjected to Sharp's copyrights. Please see to it that this technical literature be handled with utmost care. No part may be copied without our permission.
- OThe examples of applications given herein are only intended for explaining typical applications of our product. Moreover, presenting this technical literature does not mean giving our warranty or licensing any industrial property rights or other rights. Besides, Sharp will not hold itself responsible for any issue that may arise with a third party on industrial property rights from or with regard to use of the product.

OThis product has been developed and manufactured for applications to mobile instrument products.

- Olf this product is to be used for any other systems that require high reliability and safety in performance, accuracy, etc, such as transportation systems (aircrafts, trains, mobiles), security or fire-prevention systems, any other safety devices, etc, you are requested to allow for safety design of the entire system or device, such as fail-safe and redundancy design so as to maintain and assure its reliability and safety.
- ODo not apply this product for aerospace systems, mainline communication systems, nuclear power control systems or medical equipment involved in life support that require high reliability and safety, as it is not intended for such use or application.
- OSharp shall not be liable for or indemnify any loss or damage that may arise from use or application of the product without observing our cautions, conditions, etc. as stated in this technical document.
- Olf there is anything unclear to you regarding the product, please contact our staff in charge of sales.

1. Applicable Scope

This technical literature is applicable to TFT-LCD Module "LQ043T3DX02" only.

2. General Description

This module is a color active matrix LCD module incorporating amorphous silicon TFT(<u>Thin Film Transistor</u>) It is composed of a color TFT-LCD panel, driver ICs, Input FPC and a back light unit. Graphics and texts can be displayed on a $480 \times 3 \times 272$ dots panel with about 16million colors by supplying 24bit data signals (8bit × RGB), Four timing signals, logic (typ. +2.5V), analog (typ. +5V) supply voltages for TFT-LCD panel driving and supply voltage for back light.

3. Mechanical (Physical) Specifications

Item	Specifications	Unit
Screen size	10.9 (4.3" type) diagonal 🏾 🍎	E m
Active area	95.04(H)×53.856(V) 🧹 🦼	p 🔪 mm
	480×272	pixel
Pixel format	1Pixel =R+G+B dots	*
Pixel pitch	0.198(H) × 0.198(V)	mm
Pixel configuration	R,G,B vertical stripes	
Display mode	Normally black	
Unit outline dimensions	105.5(W)×67.2(H)×3.95(D)	mm
Mass	50	g
Polarizer · Surface treatment	Clear hard coat	

* The above-mentioned table indicates module sizes without some projections and FPC.

4. Input Terminal Names and Functions

4-1. TFT LCD Panel Driving (Reference Connector :

Hirose Electric CO., LTD. Product No.: FH12A-40S-0.5SH(55) Top contact type)

X Bottom contact type connectors are also prepared. Ex: FH12-40S-0.5SH(55)

% The FPCs of this LCD module are gold plated, so the connector contacts should be also gold plated.

Terminal No.				
1	GND	GND(0V)		
2	GND	GND(0V)		
3	VCC	+2.5V power source		
4	VCC	+2.5V power source		
5	R0	RED Data Signal (LSB)		
6	R1	RED Data Signal 🛛 🔒 💊 🔪		
7	R2	RED Data Signal 🛛 📈 🔪	N.	
8	R3	RED Data Signal 💦 🔪 🔪	•	
9	R4	RED Data Signal 💦 📏		
10	R5	RED Data Signal 🔥 🥄		
11	R6	RED Data Signal		
12	R7	RED Data Signal (MSB)		
13	G0	GREEN Data Signal (LSB)		
14	G1	GREEN Data Signal		
15	G2	GREEN Data Signal		
16	G3	GREEN Data Signal		
17	G4	GREEN Data Signal		
18	G5	GREEN Data Signal		
19	G6	GREEN Data Signal		
20	G7	GREEN Data Signal (MSB)		
21	B0	BLUE Data Signal (LSB)		
22	B1	Provide Signal BLUE Data Signal		
23	B2	BLUE Data Signal		
24	B3	BLUE Data Signal		
25	B4	BLUE Data Signal		
26	B5	BLUE Data Signal		
27	B6	BLUE Data Signal		
28	B7	BLUE Data Signal (MSB)		
29	GND	GND(0V)		
30	CK	Clock signal to sample each date		
31	DISP	Display ON/OFF Signal		
32	Hsync	Horizontal synchronizing signal		
33	Vsync	Vertical synchronizing signal		
34	NC	NC	Note 1	
35	AVDD	+5V Analog power source		
36	AVDD	+5V Analog power source		
37	NC	NC	Note 1	
38	TEST1	TEST1	Note 2	
39	TEST2	TEST2	Note 3	
40	TEST3	TEST3	Note 3	

Note 1) They have been open within FPC.

Note 2) Please be sure to set 38 pins (TEST1) to open.

Note 3) Please be sure to connect 39 pin (TEST2) ,40 pin (TEST3) with GND.

4-2. Backlight

0.5mmP 4Pin FPC (Reference Connector :

Kyocera Elco Corporation Product No. : 6298 Bottom contact type)

※ Top contact type connectors are also prepared.

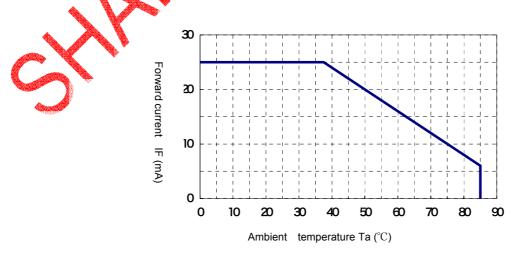
% The FPCs of this LCD module are gold plated, so the connector contacts should be also gold plated.

Terminal No.	Signal	Function	
1	V _{LED-}	LED Power Source Input terminal (Cathode side)	
2	NC	No Connection	
3	NC	No Connection	
4	V _{LED+}	LED Power Source Input terminal (Anode side)	

5. Absolute Maximum Ratings

			Aller	A.	
Item	Symbol	Conditions	Rated value	Unit	Remarks
Input voltage	V ₁	Та=25 °С	-0.3 ~ VCC+0.3	V	【Note 1】
2.5 V Power supply voltage	VCC	Та=25 °С	0 ~ +4.5	V	
5 V Power supply voltage	AVDD	Та=25° С	\sim +6.0	V	
Temperature for storage	Tstg	-	25 - +60	°C	[Note 2]
Temperature for operation	Topa		$-10 \sim +50$	°C	【Note 3】
LED Input electric current	ILED	₹a= 25°C	25	mA	【Note 4】
LED electricity consumption	PLED 🥖	Ta=25 °C	100	mW	[Note 4]

[Note 1] CK,R0~R7,G0~G7,B0~B7,Hsync,Vsync,DISP


[Note 2] Humidity : 80%RHMax. (Ta≦40°C)

Maximum bulb temperature under 39° C (Ta> 40° C) See to it that no dew will be condensed.

[Note 3] Panel surface temperature prescribes. (Reliability is examined at ambient temperature of 50°C.)

[Note 4] Power consumption of one LED (Ta=25°C) (use LED NESW008B 7pieces)

Ambient temperature and the maximum input are fulfilling the following operating conditions.

Ambient temperature and the maximum input

6. Electrical Characteristics

6-1. TFT LCD	Panel Driving						Ta = 25°C
	Item	Symbol	Min.	Тур.	Max.	Unit	Remarks
+2.5V	DC voltage	VCC	+2.3	+2.5	+3.3	V	[Note 1]
power supply	DC Current	Icc		1.2	3	mA	[Note 3]
+5V	DC voltage	AVDD	+4.8	+5.0	+5.2	V	[Note 1]
power supply	DC Current	I _{AVDD}		10	18	mA	[Note 3]
Dermiesius la		VRFVCC			100	mVp-p	Vcc=+2.5V
Permissive in	nput ripple voltage	VRFAVDD			100	mVp-p	Vcc=+5.0V
Input v	oltage (Low)	V _{IL}			0.2 _{V_{CC}}	X	Note 4]
Input vo	oltage (High)	V _{IH}	0.8 V _{CC}			V	
Input o	urrent (Low)	1			4.0		V _I =0V
input c	urrent (Low)	I _{OL}			4.0	μÂ	[Note 4]
Innut o	urrent (Lligh)						V _I =2.5V
input ci	urrent (High)	ЮН			4.0	μA	[Note 4]

 The rush current will flows when power supply is turned on, so please design the power supply circuit referring to [Note 5]
 (The rush current changes according to the condition of the supply voltage value,

rising time and so on.)

[Note 1] Sequences of supply voltage and signals

	0.0)/			2.3V
VCC	2.3V 0.3V +++ t1_C			
AVDD		t1_D		4.8V 0.3V
CK Hsync,V		→	Signal required dom	ain
DATA	A [Note :	2] <mark>i₄t3</mark> →		- <u>Min.10fram</u> e
DISP		- -	max.10frame	
LCD disp	blay		Black mask usual LCD Display display	Black mask display
LED B/L ON/OFF		, , , ,	ON processing 9 frame	OFF processing 9 frame
	example)	ON		OFF

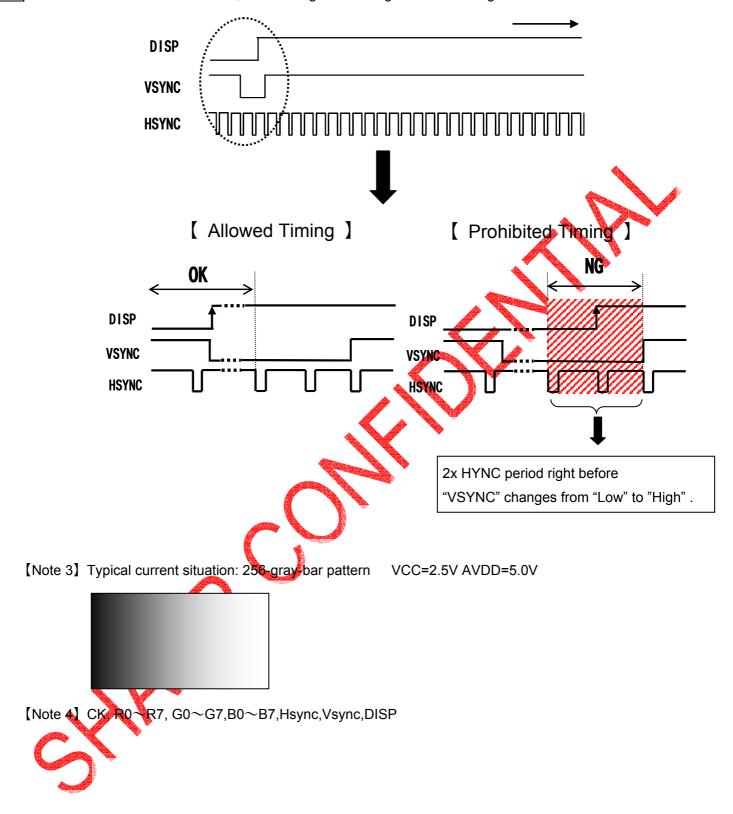
- \bigcirc Please do not supply AVDD before VCC.
- It discharges and boost up voltage for TFT module on the basis of a DISP-signal It drives Max-10 flames (about 0.2seconds) from change of DISP-signals by reasons that It takes time for 9 flames while each processing operation.

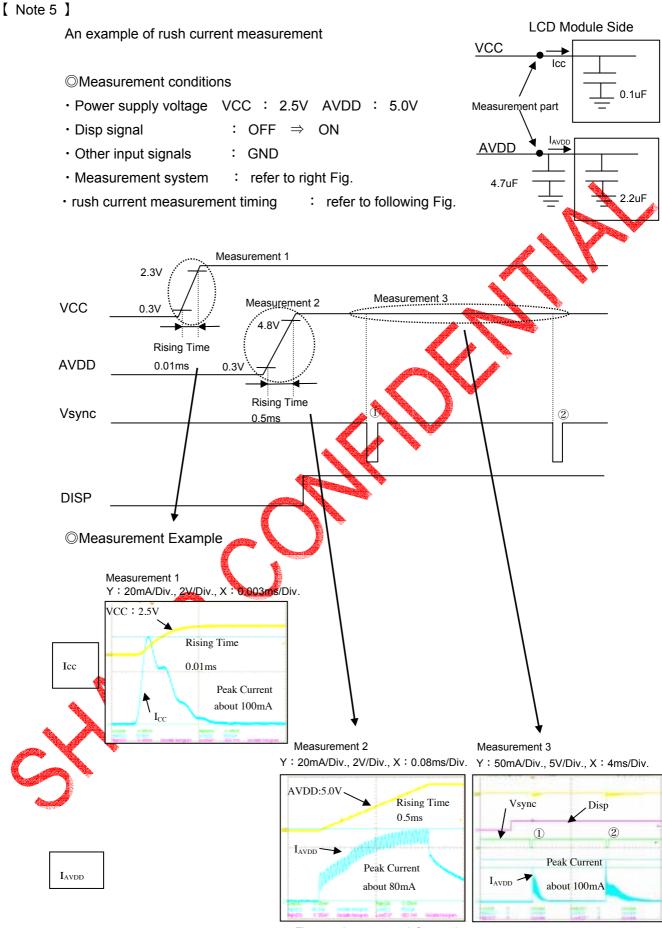
Therefore, the display start is delayed for 10 flames and Ten or more frames needs to be voltage maintained at the time of a display end.

- \odot It is not problem to set up DISP=L , ANDD=GND when VCC voltage is supplied
- Please don't set various signals to Hi-Z when VCC-voltage is supplied in reason that those signals are CMOS input.
- O Don't change DISP signal into the state of H level When AVDD voltage is in the state of GND.
- \bigcirc The ON/OFF timing of LED Back Light is an example.

	MIN	TYP	MAX	unit	Remarks
t1_C	0	—	10	ms	
t1_D	0.5	_	10	ms	
t 2	50	_	—	ms	
t 3	0	_	—	ms	Note 2
t 4	0	_	—	ms	
t 5	0	_	_	ms	

Vcc


GND


Dip Conditions for supply voltage

~

td≦10ms

A [Note 2] While "VSYNC" is "Low", don't change "DISP" signal "Low" to "High".

These rush current won't flow stationary,

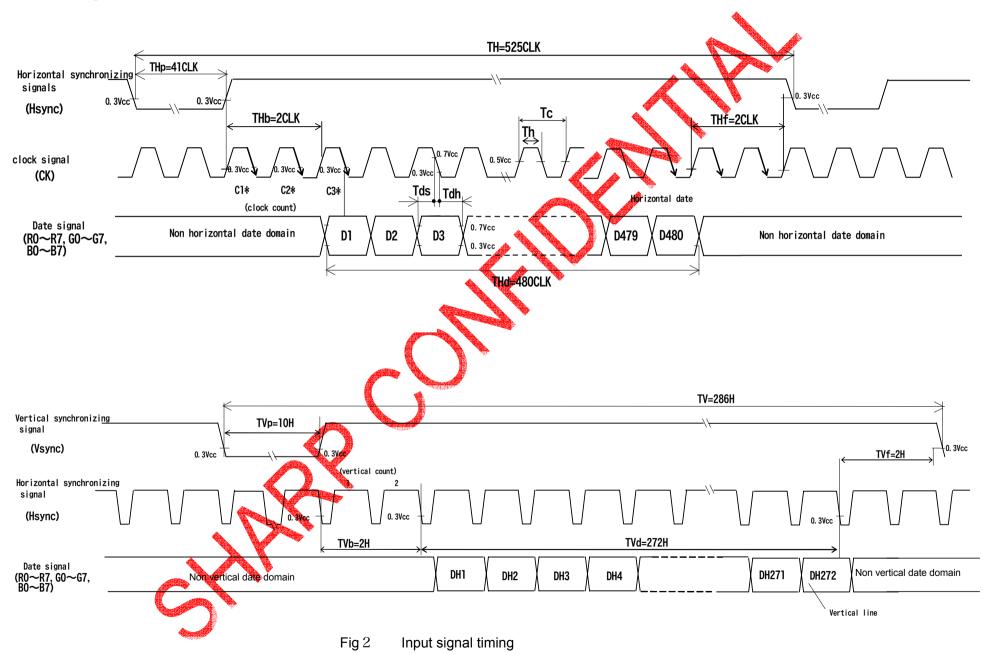
these will flow at the timing shown in Measurement 3.

6-2. Back light driving

The back light system has seven LEDs

[NESW008B]

Parameter	Symbol	Min.	Тур.	Max.	Unit	Remark
Rated Voltage	V _{BL}	_	—	29.4	V	
Rated Current	١L	_	18	20	mA	Ta=25°C


7. Timing characteristics of input signals

An input sign	al timing wavef	orm is sh	iown in Fig.	2.				
¥	meter	Symbol	Min.	Тур.	Max.	Unit	Remark	
Clock	Frequency	1/Tc	7.83	9.00	9.26	MHz		
CIUCK	Duty ratio	Th/T	40	50	60	%		
Data	Set up time	Tds	25	—	—	ns		
Dala	Hold time	Tdh	25	_		ns		
	Period	TH	—	525		Clock		
	Pulse width	ТНр	_	41		Clock		
Horizontal synchronizing	Horizontal period	THd	_	480		Clock		
	Back porch	THb	—	2		Clock		
	Front porch	THf	_	2	-	Clock		
	Period	TV	_	286	_	Line		
	Pulse width	TVp	- 42	10	_	Line		
Vertical synchronizing	Vertical period	TVd	A	272	_	Clock		
	Back porch	TVb		2	—	Line		
	Front porch	T <mark>V</mark> f		2	_	Line		


[Note] • In case of using the slow frequency, the deterioration of display, flicker etc may occur. • The timing characteristics are basically fixed as above.

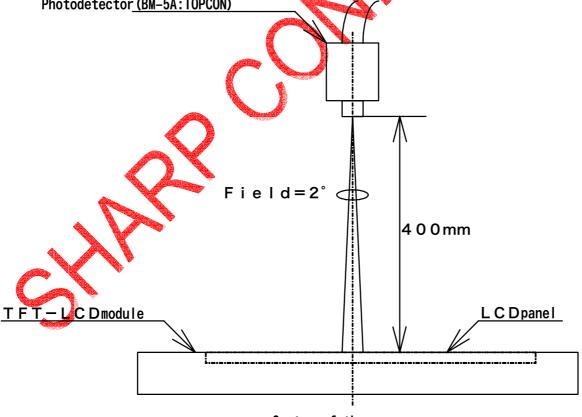
7-3 Input Data Signals and Display Position on the screen

Colors & Date signal Gray G0 G1 G3 G4 G5 G6 G7 B0 B1 B2 Gray R0 R1 R2 R3 R4 R5 R6 R7 G2 B3 B4 B5 B6 B7 MSB MSB LSB MSB LSB Scale LSB Black Blue _ _ Green Basic Color Cyan _ _ Red _ Magenta Yellow _ n White _ GS0 Black GS1 企 Gray Scale of Red GS2 Darker \mathbf{V} \downarrow $\mathbf{1}$ 企 $\mathbf{1}$ \mathbf{V} $\mathbf{1}$ Ŷ GS253 Ō n Brighter GS254 Û Ō GS255 C Red GS0 Ő Black GS1 企 Gray Scale of Greer GS2 Darker \mathbf{V} $\mathbf{1}$ $\mathbf{1}$ \mathbf{V} 企 \mathbf{V} \downarrow $\mathbf{1}$ $\mathbf{1}$ Û GS253 Brighter GS254 Û GS255 Ö Green GS0 ń Black GS1 ᡎ Gray Scale Blue **GS**2 Darker \mathbf{V} \downarrow \downarrow 企 \mathbf{V} $\mathbf{1}$ $\mathbf{1}$ Û GS253 Brighter ţ, GS254 GS255 Blue : Low level voltage : High level voltage

8. Input Signals, Basic Display Colors and Gray Scale of Each Color

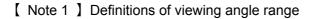
Each basic color can be displayed in 256 gray scales from 8 bit data signals. According to the combination of 24 bit data signals, the 16-million-color display can be achieved on the screen.

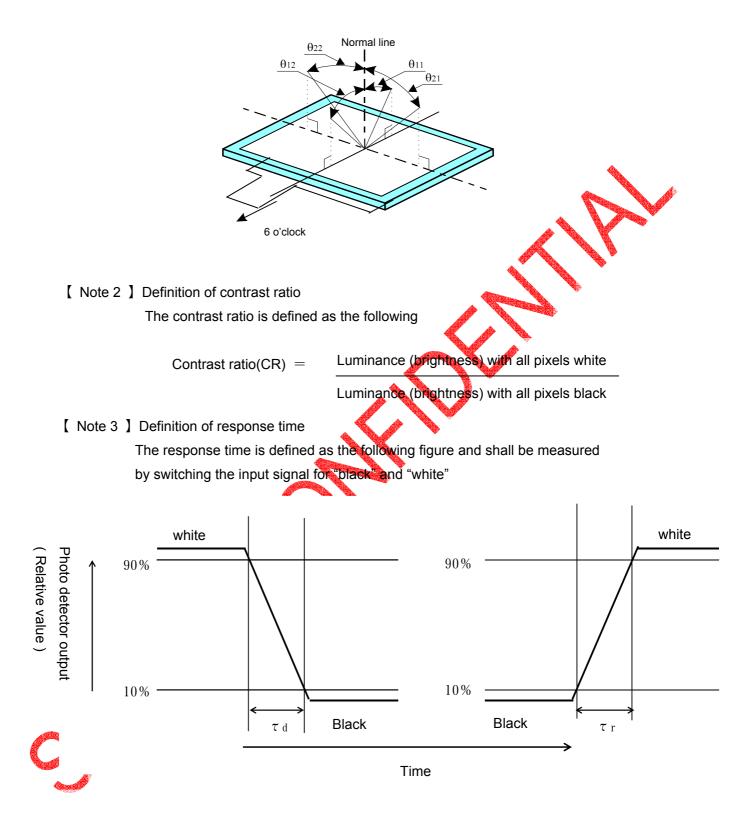
9. Optical Characteristics


Module characteristics

								50, AVDD = 5.00
Param	neter	Symbol	Condition	Min.	Тур.	Max.	Unit	Remark
Viewing	Horizontal	θ21,θ22	CR>10	_	80	—	Deg.	
angle		θ11		_	80	_	Deg.	[Note1,4]
range	Vertical	θ12		_	80	_	Deg.	
Contras	t ratio	CR	θ=0°	100	400	—		[Note2,4]
Response	Rise	Tr	θ=0°	_	30	45	ms	
Time	Decay	тd		_	30	45	ms	[Note3,4]
Chroma	ticity of	x		0.246	0.296	0.346	X	
White		у		0.293	0.343	0.393 🔦		[Note4]
Luminance of white		XL1		_	165		cd/m ²	ILED=18mA
Laminario					100			[Note4]

Ta = 25°C, VCC = +2.5V, AVDD = 5.0V


* The optical characteristics measurements are operated under a stable luminescence(I LED = 18mA) and a dark condition. (refer to Fig.3)


Photodetector (BM-5A: TOPCON)

Center of the screen

Fig. 3 Optical characteristics measurement method

[Note 4] This shall be measured at center of the screen.

- 10. Handling of modules
- 10-1 Inserting the FPC into its connector and pulling it out.
- ① Be sure to turn off the power supply and the signals when inserting or disconnecting the cable.
- 2 Please insert for too much stress not to join FPC in the case of insertion of FPC.

10-2 About handling of FPC

- ① The bending radius of the FPC should be more than 1.4mm, and it should be bent evenly.
- ② Do not dangle the LCD module by holding the FPC, or do not give any stress to it.

10-3 Mounting of the module

- 1 The module should be held on to the plain surface. Do not give any warping or twisting stress to the module.
- ② Please consider that GND can ground a modular metal portion etc. so that state electricity is not charged to a module.

10-4 Cautions in assembly / Handling pre cautions.

As the polarizer can be easily scratched, be most careful in handling it.

- Work environments in assembly.
 Working under the following environments is desirable
- a) Implement more than $1M\Omega$ conductive treatment (b) placing a conductive mat or applying Conductive paint) on the floor or tiles.
- b) No dusts come in to the working room. Place an adhesive, anti-dust mat at the entrance of the room.
- c) Humidity of $50 \sim 70\%$ and temperature of $15 \sim 27\%$ are desirable.
- d) All workers wear conductive shees, conductive clothes, conductive fingerstalls and grounding belts without fail.
- e) Use a blower for electrostatic removal. Set it in a direction slightly tilt downward so that each Module can be well subjected to its wind. Set the blower at an optimum distance between the blower and the module.
- 2 How the remove dust on the polarizer
- a) Blow out dust by the use of an N2 blower with antistatic measures taken. Use of an ionized air Gun is recommendable.

When the panel surface is soiled, wipe it with soft cloth.

- ③ In the case of the module's metal part (shield case) is stained, wipe it with a piece of dry, soft cloth. If rather difficult, give a breath on the metal part to clean better.
- ④ If a water dropped, etc. remains stuck on the polarizer for a long time, it is apt to get discolored or cause stains. Wipe it immediately.
- (5) As a glass substrate is used for the TFT-LCD panel, if it is dropped on the floor or hit by something hard, it may be broken or chipped off.
- (6) Since CMOS LSI is used in this module, take care of static electricity and take the human earth into consideration when handling.

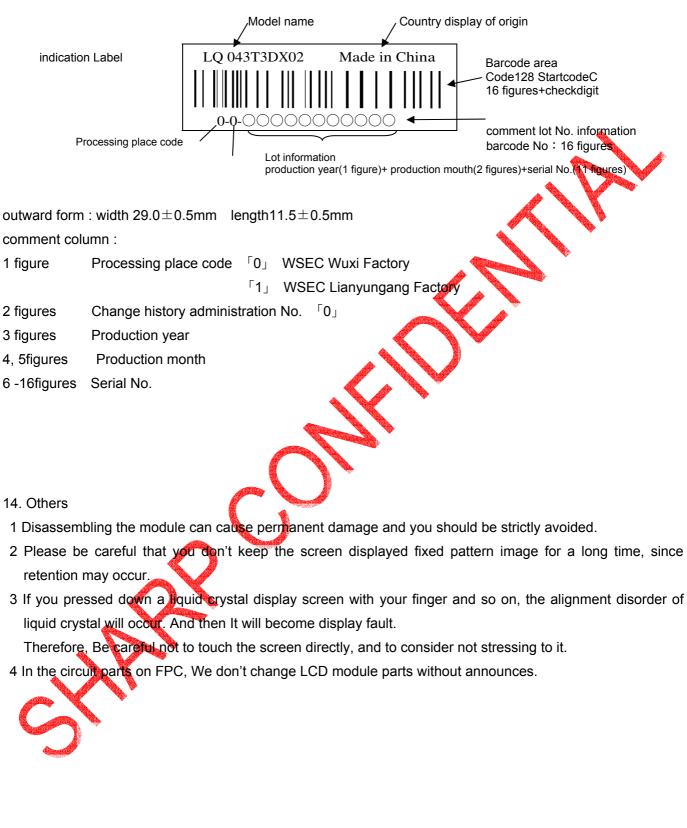
10-5 Others

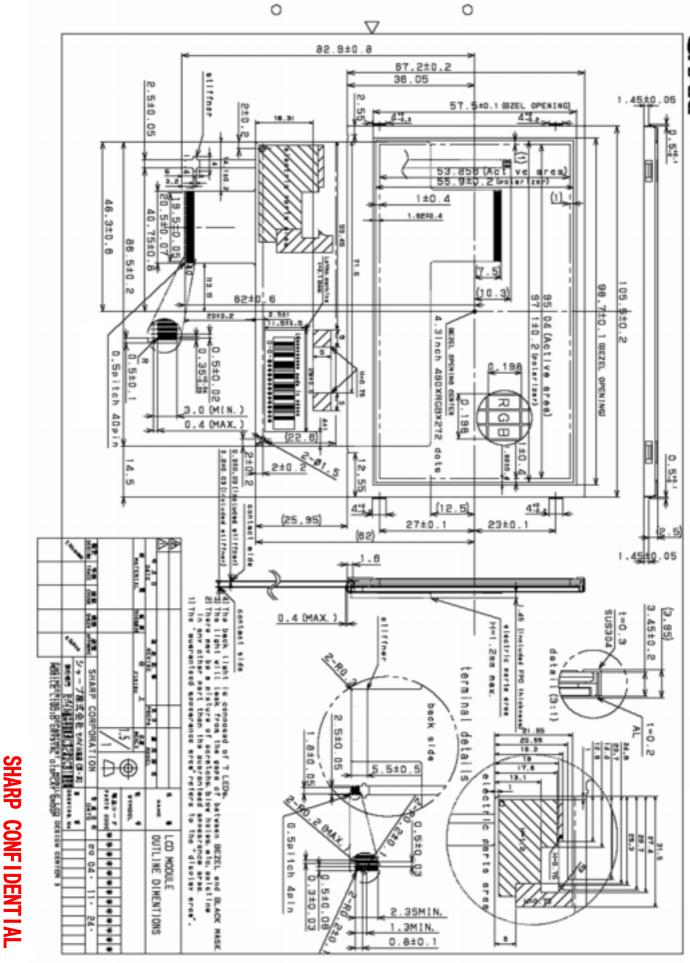
- Regarding storage of LCD modules, avoid storing them at direct sunlight-situation. You are requested to store under the following conditions: (Environmental conditions of temperature/humidity for storage)
- (1) Temperature: $0 \sim 40^{\circ}$ C
- (2) Relative humidity : 95% or less
 - As average values of environments (temperature and humidity) for storing, use the following control guidelines:
 - Summer season: 20~35°C, 85% or less Winter season: 5~15°C, 85% or less
 - If stored under the conditions of 40°C and 95% RH, cumulative time of storage must be less than 240 hours.
- ② If stored at temperatures below the rated values, the inner liquid crystal may freeze, causing cell destruction. At temperatures exceeding the rated values for storage, the liquid crystal may become isotropic liquid, making it no longer possible to come back to its original state in some cases.
- ③ If the LCD is broken, do not drink liquid crystal in the mouth. If the liquid crystal adheres to a hand or foot or to clothes, immediately cleanse it with soap.
- ④ If a water drop or dust adheres to the polarizer, it is apt to cause deterioration. Wipe it immediately.
- 5 Be sure to observe other caution items for ordinary electronic parts and components.

TT. Reliability test items		
No.	Test item	Conditions
1	High temperature storage test	Ta = 60 [°] C 240h
2	Low temperature storage test	Ta 25°C 240h
3	High temperature & high humidity operation test	Ta = 40°C ; 95%RH 240h No condensation)
4	High temperature operation test	Ta = 50° C 240h (The panel temp. must be less than 50° C)
5	Low temperature operation test	Ta = -10°C 240h
6	Vibration test (non- operating)	Frequency : $10\sim55$ Hz/Vibration width (one side) : 1.5mm Sweep time : 1minutes Test period : (2 hours for each direction of X,Y,Z)
7	Shock test	Direction : ±X, ±Y, ±Z, Time : Third for each direction. Impact value : 100G Action time 6ms
8	Thermal shock test	Ta=-25°C~60°C /10 cycles (30 min) (30min)

11. Reliability test items

[Result Evaluation Criteria]


Under the display quality test conditions with normal operation state, these shall be no change which may affect practical display function.


12. Display Grade

The standard regarding the grade of color LCD displaying modules should be based on the delivery inspection standard.

13. Lot No. marking

The lot No. will be indicated on individual labels. The location is as shown

LCM405005 Page 21 of 21

SHARP